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Abstract

An approach to the flexural stiffness identification of a linear structure is proposed. The idea of the presented approach

is to transform the dynamical problem into a static one by integrating the input and output signals. The output signal is the

structure displacement due to different kinds of loads such as a pulse acting at a given point, moving a load of deterministic

or random type. The obtained solution for the one-point force can be easily generalized to a set of point forces, which can

be a model of the pressure of vehicle axes. The presented method can be applied to the identification of structure

parameters of bridges. It allows also to take into account some stochastic disturbances following the movement of vehicles

through the pavement roughness.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The identification of the most relevant structural properties was and still is necessary to support the
calibration, updating and validation of mathematical and numerical models of the structure used at design and
service stages. Also in damage detection techniques the regular identification of modal properties, which is
possible thanks to the continuous health monitoring of the structure, plays an important role. Therefore, the
problem of parameter estimation and system identification, especially as applied to structural engineering, has
been a subject of investigations for many scientists for many years and different techniques have been
elaborated. A number of results, examples and applications of parameter estimation and system identification
techniques elaborated to 1986 are described in Ref. [1]. In the structural identification, Wadia-Fascetti and
others [2] have proposed the following repeated six-step methodology:

Step 1: A-priori models development based on the knowledge about the systems.
Step 2: Experiment design, which requires selecting the inputs (loads, excitation, and temperature) and

sensors.
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Step 3: Full-scale tests, which include both instrumented monitoring (IM) for static tests and multi-reference
impact tests (MRIT) for modal tests. The results from both static and modal tests can be used to verify the
different testing methods.

Step 4: Data processing. In this step the data obtained from the experiment must be processed for use in the
parameter estimation module such that the quality of the data is maintained.

Step 5: Model calibration and parameter estimation involve identifying critical geometric parameters using
the processed static data from Step 4.

Step 6: Utilization of the calibrated models includes obtained interpretations in a form that is useful to other
researchers and practitioners.

In general, the identification techniques can be divided into two groups [1,3,4]. The first group is based on
the continuous model of the structure, the exact solution and system identification theory, such as the time-
domain method (TDM) and the frequency time-domain method (FTDM). The modal superposition technique
is applied to decouple the equation of motion with the subsequent solution using the optimization scheme, for
example genetic algorithms or evolutionary algorithms [5,6]. The second group of methods is based on discrete
models of the structure and finite element formulation, such as the interpretive method (ITM), the state-space
approach [7], etc.

Another type of identification techniques division is related to the objective of the identification, which can
be the modal parameters of the structure such as the frequencies, damping ratios and mode shapes [8–10] or
forces acting on the structure such as moving load [3,4,6,7,11–15] or impact load [14,16–18]. In the
experimental modal parameter identification of civil engineering structures, three types of structural dynamic
testing can be distinguished [10]:
(1)
 force vibration testing—the structure is excited by artificial means such as shakers or drop weight,

(2)
 free vibration testing—excitation by a sudden dropping of a load on the structure,

(3)
 ambient vibration testing—uses the disturbances inducted by traffic or wind as natural or environmental

excitations.
In some cases it is either impractical or impossible to use artificial inputs to excite the system, so natural
excitation must be measured along with the system response to assess the dynamic characteristics [19].
Therefore in recent years, many authors have investigated both the problem of load identification (moving
load and impact load) and modal structure parameters identification under operational conditions and have
applied it to damage detection [4,10,19–21]. Alvin et al. [19] focused their considerations on the state-space
oriented system identification theory as specialized to structural dynamics governing the equations of motion.
The authors have applied wavelet transformation techniques for extracting impulse response functions, used
various input–output combinations for multi-input and multi-output problems, robust ways for identifying
both proportional and non-proportional damping parameters, and have shown the use of the localized
identification theory for damage detection from measured response data. In his paper, an excellent
bibliography with 65 references is also given. As mentioned above, identification of the structure parameters
applying a moving load has been considered in many papers, among others in Refs. [3,4,6,7,11,12]. A method
based on modal superposition and regularization technique developed to identify moving loads on an
elastically supported multi-span continuous bridge desk is presented in paper [3]. Law et al. [4] presented a
novel moving force and prestress identification method based on the finite element and the wavelet-based
methods for a bridge-vehicle system. Jiang et al. [6] described the parameter identification of a vehicle moving
on multi-span continuous bridges, taking into account the surface roughness. In paper [7], a method of
moving force identification is developed using the dynamic programming technique. The forces are identified
in the time domain using recursive formula and responses are reconstructed using the identified forces for
comparison. Different aspects of application of moving loads identification through regularization have been
presented in papers [11,12].

In this paper, an approach to the flexural stiffness identification of the beam or linear structure is proposed.
The idea of the proposed approach lies within a time-domain method and is similar to that presented in paper
[22,23]. The theoretical investigations carried out by Langer and Ruta [22] concerned the dynamic
identification of the elastic module of layered half-space. The authors have transformed shock impulse and
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response oscillograms into static substitute and presented them as the Hankel transform of a superficial
displacement state. The method proposed is also based on transforming the dynamical problem into a static
one by integrating the input and output signals. The output signal is structure displacements due to the
different types of loads such as a pulse acting at a given point, or a moving load of deterministic or random
type. The solution obtained for the one-point moving force can be generalized to a set of point moving forces,
which can be a model of the pressure of vehicle axes. The general difference between the proposed method and
that presented by Langer and Ruta [22] concerns the way in which the dynamical problem is transformed into
a static one: the authors of [22] have integrated the solution of the equation of motion and in this paper the
equation of motion is integrated immediately after applying eigentransformation. The proposed method of the
structure parameter identification compared to the idea presented in Ref. [22] has been extended to the case in
which the load acting on the structure has a random nature. The investigations have been limited to the load
model described by a moving load in which the interaction between the structure and the load is not taken into
account.

In the case of interaction between the structure and the load another, more complex procedure should be
applied.

The presented method can be used for the identification of structure parameters of bridges. It allows also to
take into account some stochastic disturbances following the movement of vehicles through the pavement
roughness.
2. Identification of a beam flexural stiffness in the case of load acting at a given point

The main idea of the proposed procedure for the structure parameters identification will be described on a
beam vibrating due to a short-lived load (a pulse) acting at a given place (Fig. 1a and b). The beam vibrations
for the simply supported beam and for the continuous beam for the loading span are described by the
following equation:

EI
q4wðx; tÞ

qx4
þ c _wðx; tÞ þm €wðx; tÞ ¼ f ðtÞpðxÞ (1)

where EI denotes the flexural rigidity of the beam, c is the damping coefficient, m is the mass per unit length,
and F(x, t) ¼ f(t)p(x) denotes the load as a product of the excitation process f(t) acting from 0 to T and the
load distribution on the beam’s length p(x). In a particular case when the load is a point force, p(x) ¼ d(x�x0).
L2 3L
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Fig. 1. Scheme of beams vibrating due to a short-lived load acting at a given point.
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Let us assume that at the beginning, the beam is in the resting condition, i.e.

wðx; 0Þ ¼ 0; _wðx; 0Þ ¼ 0 (2)

Now we will integrate Eq. (1) due to the time within the time interval (0, N), keeping in mind that for the
load assumed, limt!1 wðx; tÞ ¼ 0; limt!1 _wðx; tÞ ¼ 0. In such a way we obtain the static substitute of the
equation of motion (1)

EIW IV
0 ðxÞ ¼ F0pðxÞ (3)

where

W 0ðxÞ ¼ lim
t!1

W ðx; tÞ ¼ lim
t!1

Z t

0

wðx; tÞdt (4)

F0 ¼ lim
t!1

F ðtÞ ¼ lim
t!1

Z t

0

f ðtÞdt ¼ lim
t!1

Z T

0

f ðtÞdt (5)

and T is the time duration of the load. The shapes of the source functions w(x, t) and f(t) and their integrals
W0(x) and F0 are shown in Fig. 2.

If the components of the excitation process f(t) and p(x) are known and the beam vibrations process w(x, t)
is measured at a given point x, then it is possible to calculate the quantities F0 from Eq. (5) and W0(x) from
Eq. (4) and then the identification of the beam stiffness EI can be calculated. In particular, when the beam is a
simply supported beam assuming that p(x) ¼ d(x�x0), from Eq. (3) and the boundary conditions we obtain

W 0ðxÞ ¼
F 0

EI

L3

6
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(6)

where the symbol H( ) denotes the Heaviside unity function.
Let us assume for simplicity that the measure of the vibrations has been carried out at the point x ¼ x0.

Hence if the quantities F0 and W0(x0) have been calculated, we obtain

EI ¼
F0

W 0ðx0Þ

L3

3
1�

x0

L

� �2 x0

L

� �2
(7)

Remark. Every measurement of the beam vibrations and the loading process is performed with some error;
therefore the estimate of the constants F0 and W0(x0) might be inaccurate. In order to minimize the influence
of these errors, all measurements should be performed several times. For each measurement we determine the
t
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t
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Fig. 2. The shapes of the source functions w(x, t) and f(t) and their integrals W0(x) and F0.
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beam stiffness by formula (7) and a trustworthy beam stiffness may be defined as an arithmetic mean of so
determined values. The beam vibrations should be measured in several points for various placements of the
load. The same remark will apply to the considerations presented hereafter.

3. Identification of the beam parameters in the case of a moving load

Now, we will apply, after some modifications, the procedure for identification the beam’s parameter
presented in a previous chapter to the case when the excitation process is of the type of a moving load. In such
a case the load can be treated as a short-lived load at time T ¼ L/v. The equation of motion for a beam due to
the point force moving along the beam with constant speed v is as follows:

EI
q4wðx; tÞ

qx4
þ c _wðx; tÞ þm €wðx; tÞ ¼ Pdðx� vtÞ; 0ptp

L

v
0pxpL (8)

and the initial conditions have the form

wðx; 0Þ ¼ 0;
qwðx; tÞ

qt

����
t¼0

¼ 0. (9)

As is usually done, we transform this partial differential equation into a set of ordinary differential
equations, assuming that

wðx; tÞ ¼
X1
n¼1

ynðtÞW nðxÞ (10)

where Wn(x) are the eigenfunctions that fulfill the equations given below and appropriate boundary conditions

W IV
n ðlÞ � l4nW nðxÞ ¼ 0. (11)

We obtain

€ynðtÞ þ 2a _ynðtÞ þ o2
nynðtÞ ¼

P

mg2n
W nðvtÞ (12)

where

2a ¼
c

m
; g2n ¼

Z L

0

W 2
nðxÞdx.

The initial conditions take the shape

ynð0Þ ¼ 0; _ynð0Þ ¼ 0. (13)

Now we will transform the dynamic problem into a static one in a similar way as in the previous case.
Let us introduce the following notations:

F n ¼

Z L=v

0

W nðvtÞdt; Y nðtÞ ¼

Z t

0

ynðtÞdt. (14)

The magnitude of Yn(t) converges to a constant magnitude if the time converges to the infinity t-N,
Y n ¼ limt!1Y nðtÞ.

From this, it follows that by integrating the equations of motion from zero to infinity we obtain following
expression:

Y n ¼
PF n

EIl4ng2n
¼

PF n

mo2
ng2n

. (15)

Let us denote

W 0ðxÞ ¼
X1
n¼1

Y nW nðxÞ ¼
P

EI

X1
n¼1

Fn

l4ng2n
W nðxÞ ¼

X1
n¼1

PF n

mo2
ng2n

W nðxÞ (16)
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If we have measured the deflection w(x, t) then we can calculate W0(x) as

W 0ðxÞ ¼

Z 1
0

wðx; tÞdt (17)

If we know the load P and have measured the deflection w(x0, t) at point x ¼ x0 and calculated W0(x0) from
Eq. (17), then the beam flexural stiffness can be determined from the expression

EI ¼
P

W 0ðx0Þ

X1
n¼1

Fn

l4ng2n
W nðx0Þ. (18)

For the simply supported beam we have

W nðxÞ ¼ sin
npx

L
;

Z L

0

W nðxÞdx ¼
L

2
; l4n ¼

np
L

� �4
,

Fn ¼

Z L=v

0

sin
np vt

L
dt ¼

1

npðv=LÞ
½1� ð�1Þn� (19)

and we obtain

EI ¼
2P

W ðx0ÞLv

X1
n¼1

1� ð�1Þn

ðnp=lÞ5
sin

npx0

L
(20)

Notice that the eigenfunctions and eigenvalues appearing in Eqs. (18) and (20) and determined from Eq. (11)
and appropriate boundary conditions depend neither on the stiffness EI nor on the beam mass m. It follows
that from the above formulae and from the measured values of W(x0), one can determine the beam stiffness.

4. Identification of the beam parameters in the case of a random moving load

Let us consider the vibrations of a beam described by the equation of motion (8) in which the moving point
force is random and consists of two components, a constant quantity P0 and the irregular random component
Ps(t), i.e.

PðtÞ ¼ P0 þ PsðtÞ (21)

For simplicity we assume that E[Ps(t)] ¼ 0 (this assumption is not necessary).
In such a case Eq. (15) takes the form

Y n ¼
1

EIl4ng2n

Z L=v

0

PðtÞW nðvtÞdt (22)

The second probabilistic moment of the function W0(x) is described by the expression

E½W 2
0ðxÞ� ¼

1

ðEIÞ2

X
i

X
j

1

l4i l
4
j g

2
i g

2
j

Z L=v

0

Z L=v

0

E½Pðt2ÞPðt2Þ�W iðvt1ÞW jðvt2Þdt1 dt2

¼
1

ðEIÞ2

X
i

X
j

1

l4i l
4
j g

2
i g

2
j

Z L=v

0

Z L=v

0

KPPðt1; t2ÞW iðvt1ÞW jðvt2Þdt1 dt2 (23)

where

KPPðt1; t2Þ ¼ E½Pðt1ÞPðt2Þ�

denotes the correlation function of the random load.
If the expected value of the random component Ps is different from 0, i.e. E[Ps(t)] 6¼0, then it influences the

correlation function of the random load Kpp.
We need to specify how to determine the correlation function KPP(t1, t2) once the realization of P(t) is

known from measurements. If P(t) is a realization of a stationary and ergodic process in the time interval
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(0, L/v), then the correlation function of this process can be estimated from the formula

KPPðtÞ ¼ KPPðt1 � t2Þ ¼
v

L

Z L=v

0

PðtÞPðtþ tÞdt. (24)

If the process P(t) is non-stationary, in order to determine its correlation function we need to apply more
complex numerical methods such as wavelet analysis.

On the other hand, the second probabilistic moment can be calculated on the basis of the measured beam’s
deflections. This allows to identify the flexural rigidity of the beam because Eq. (23) can be presented in the
form

ðEIÞ2 ¼
1

E½W 2
0ðxÞ�

X
i

X
j

1

l4i l
4
j g

2
i g

2
j

Z L=v

0

Z L=v

0

KPPðt1; t2ÞW iðvt1ÞW jðvt2Þdt1 dt2. (23a)
5. Identification of the linear structures parameters using the stiffness elements method

Let us consider a linear system loaded by a deterministic moving load, the vibrations of which are described
by a set of differential equations

M � €qðx; tÞ þ C � _qðx; tÞ þ K � qðx; tÞ ¼ FðvtÞ; 0ptp
L

v
(25)

and

M � €qðx; tÞ þ C � _qðx; tÞ þ K � qðx; tÞ ¼ 0; tX
L

v
(26)

where M, C and K are the mass matrix, the damping coefficients matrix and the stiffness matrix, respectively,
q(x, t) is the vector of generalized coordinates and F(vt) is the vector of moving load, v denotes the velocity of
the moving load and L is the length of the structure.

Similarly as for the beam, we transform the dynamic problem into the static substitute by calculating
the integrals of the vectors of general coordinates q(x, t) and loads F(vt) (Eqs. (27)) and their limit values
(Eqs. (28))

Qðx; tÞ ¼

Z t

0

qðx; tÞdt; RðtÞ ¼

Z t

0

FðvtÞdt (27)

Q0ðxÞ ¼ lim
t!1

Qðx; tÞ; R0 ¼

Z L=v

0

FðvtÞdt ¼ lim
t!1

RðtÞ ! 0 (28)

After integrating Eq. (24) we obtain

K �Q0 ¼ R0 (29)

If the matrix R0 and some chosen coordinates of the vector q(x, t) are known then the vector Q0 can be
determined and hence some parameters of the stiffness matrix K can be obtained.

From the theoretical point of view follows that how many general coordinates (displacements) we measure,
such many elements of the vector Q0 can be calculated and such many parameters of the stiffness matrix K can
be identified or one parameter could be identified repeatedly. Some numerical problems could appear.

The system of matrix Eq. (25) was obtained by the finite elements methods. Notice that it is possible to take
into account, among others, variability of the construction rigidity, for example, by assuming a constant
rigidity on each finite element.
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6. Example—identification of the flexural rigidity of the longitudinal beam of the highway bridge

Usually the bridge test load investigations are due to the static load and therefore the proposed
approach for the structure’s parameters identification has been tested on the longitudinal and not for
the one-span beam of the highway bridge. For such a bridge, the experimental data (vertical displacements)
due to moving load were available and could be applied for the identification of flexural rigidity.
The considered bridge is a part of the expressway A2 between Poznan and Warsaw, Poland, and
consists of five longitudinal steel plane girders of 1800mm high and distance between them equal to 3700mm,
reinforced concrete plates of 280mm thickness and steel cross-bars with distance of 7800mm. The
overall length of the bridge is equal to 39.00+46.80+46.80+46.80+39.00 ¼ 218.40m. The total width
of the bridge is equal to 17.65m (roadway, safety zone, sidewalk, barrier). The design characteristics
of the girder’s cross-section are shown in Fig. 3 and the static model of the longitudinal beam is shown
in Fig. 4. The mass per unit length of the bridge girder was equal to 4300 kg/m. During the test load,
investigations described in Ref. [24] some dynamical measurements such as the time distribution of the vertical
(perpendicular to the bridge axis) and horizontal (parallel to the bridge axis) displacements; the frequencies of
the vibrations in the external girder have also been done. Using the laser device NOPTEL OY PSM200,
the vertical and horizontal displacements caused by two trucks, each of the total weight equal to 409 kN and
the pressure of the rear axis equal to 257 kN, moving one by one and in parallel with different speeds
equal to 5, 20 and 40 km/h, have been measured. Some of the vertical displacements (marked by y) and
horizontal ones (marked by x) obtained for the middle beam in the middle point of their forth span are
presented in Figs. 5 and 6.

The equivalent flexural stiffness of the bridge system (five longitudinal beams, cross-bars, bridge deck)
modeled by a continuous beam has been calculated from the design parameters and then identified for the
assumed static model applying the technique presented in chapter 3 (Eq. (18)). The calculations have been
made for the load caused by moving vehicles, taking into account the lateral distribution on the longitudinal
beam for which the displacements have been measured. The eigenfunctions appearing in Eq. (18) have been
calculated for the beam of the static model, which is shown in Fig. 4. The equivalent flexural stiffness of the
beam calculated from the design parameters is equal to EI ¼ 20,214,328,317Nm2 and the arithmetic average
of identified flexural stiffness after using four eigenvectors for both types of loads and all speeds considered is
equal to EI ¼ 22,925,044,200Nm2. From this test example, no general conclusions can be drawn, because the
experimental data have been performed for another use.
18
00

28
0

Reinforced
concrete plate:

Ac = 1.054 m2,
Ic = 0,0072 m4,   
Ec = 36400 MPa

As = 0,0727 m2,
Steel girder: Is = 0,0403 m4,

Es = 206000 MPa

Fig. 3. Design characteristics of the girders cross-section.

39.00m 46.80m 46.8046.80m 39.00m

EI EI EI EI EI

m = 4303 kg/m

Fig. 4. Static model of the longitudinal beam of the highway bridge.
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Fig. 5. The measured displacements caused by two trucks moving in parallel with v ¼ 20 km/h. x denotes the horizontal displacement

(parallel to the bridge axis) and y the vertical displacements (perpendicular to the bridge axis).

Fig. 6. The displacements caused by two trucks moving one by one with v ¼ 20 km/h. x denotes the horizontal displacement (parallel to

the bridge axis) and y the vertical displacements (perpendicular to the bridge axis).

R. Sieniawska et al. / Journal of Sound and Vibration 319 (2009) 355–365 363
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7. Summary and conclusions

An approach for the identification of a structure’s parameters based on measurements of displacements
caused by a short-term and moving short-term load has been presented. The proposed algorithm can be a
good tool in the case when the structure, for example a highway bridge, should not be switched off from the
use for a long time. The results obtained need to be verified by other identification methods and can also
complete the results obtained in another way. It should be outlined that the proposed technique of stiffness
identification does not take into account the interaction between the structure and the load and that the
expressions presented in chapters 2–4 are given for the one-span structures.

For beam bridges, it is an important problem to determine the transverse load distribution onto particular
beams. It is worth noting that the proposed method allows to identify not only the structure’s parameters but
also the transversal distribution of the load. The latter depends on the knowledge about the structure and the
measurements we can obtain.

Such a distribution can be determined by measuring the vibrations of each beam under a load, which, on
each particular beam, is proportional to the quantity (17).
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